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Abstract: Bridge design specifications include design provisions for ductile diaphragms to resist seismic excitations perpendicular to a
bridge’s axis. Buckling restrained braces (BRBs) can conveniently be used for this purpose. Bidirectional ductile diaphragms expand
the concept to resist all-direction seismic forces, and nonlinear inelastic response history analyses (NL-RHAs) can be used to show that
satisfactory seismic performance objectives can be obtained using this concept. However, a simple design procedure is needed to address
the design of the BRBs in the bridge longitudinal direction. As a first step, to fill that need for common multispan simply-supported bridges, a
relatively simple-to-use equivalent lateral force (ELF) procedure has been developed on the basis of results from “optimal designs” obtained
using NL-RHAs. Findings indicate that the proposed ELF design procedure leads to design that meet the target design objectives.
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Introduction

Seismic design of common multi-span bridges generally relies ei-
ther on plastic hinging of columns to dissipate earthquake energy,
or on base isolation. The first one implies damage to the gravity-
carrying columns (Lehman and Moehle 2000); the second one
requires a special bearings and expansion joints to accommodate dis-
placements that can be extremely large in many cases (Roussis et al.
2003). Using the bidirectional ductile end diaphragm (BDDD) con-
cept with inexpensive buckling restrained braces (BRBs) can provide
resilient bridges with damage-free columns, at low cost, while
minimizing displacements demands to levels that can be easily
accommodated.

BRBs (Bruneau et al. 2011; Watanabe et al. 1988) have been
used in some large bridges (Kanaji et al. 2005; Lanning 2014;
Lanning et al. 2016a, b; Reno and Pohll 2010; Wang et al. 2016)
and structural engineers are already familiar with BRBs in building
applications (Aiken et al. 2002; Cui 2020; Fahnestock et al. 2007;
Guerrero et al. 2016; Hoveidae and Rafezy 2012; Kiggins and
Uang 2006; López and Sabelli 2004; MacRae et al. 2021; Sabelli
et al. 2003; Saxey 2015; Tremblay et al. 2006; Tsai and Hsiao 2008;
Tsai et al. 2008; Uang et al. 2004).

Currently, if wishing to use BRBs to implement a ductile dia-
phragm strategy, the AASHTOGuide Specification for LRFD Seis-
mic Bridge Design (AASHTO 2011) provides simple equations
that could be used to resist seismic excitations only in the direction

transverse to the bridge axis, based on development and validation
work by Zahrai and Bruneau (1999a, b), Alfawakhiri and Bruneau
(2001), and Carden et al. (2006). The concept was expanded to
address bidirectional seismic forces for bridges with stiff structures
(Celik and Bruneau 2009; Wei and Bruneau 2018) and a design
procedure was also provided for the case of rigid piers. However,
while the concept of bidirectional ductile end diaphragm empha-
sizes the ability to dissipate energy under both longitudinal and
transverse seismic excitations by devices installed at the ends of
the span, there is no verified design procedure available other than
performing NL-RHA (Lanning 2014; Lanning et al. 2016b) to de-
sign BRBs in the longitudinal direction. Pantelides et al. (2016)
studied the application of BRBs in the longitudinal direction to re-
duce pounding in curved and skewed bridges as a retrofit strategy
but did not propose a generally applicable elastic analysis based
design procedure.

To make the bidirectional diaphragm concept attractive to be
applied to common multispan bridges, a design procedure based on
elastic analysis is required. Carrion-Cabrera and Bruneau (2022b)
showed, using nonlinear response history analysis (NL-RHA), that
using the response spectrum analysis (RSA) for design for the lon-
gitudinal BRBs in BDDD can be effective to limit the maximum
ductility demand in BRBs in the bridge, but also that only a few
BRBs reached the set target ductility in such designs (they also
showed that the NL-RHA approach used provided acceptable re-
sults by studying the sensitivity of the bridges response to the use
of different BRB material models themselves calibrated against test
results of BRBs). Carrion-Cabrera and Bruneau (2022a) then
showed that NL-RHA could be used to achieve an optimum design
whereby all BRBs reach the same target ductility demand, but this
design approach is time consuming and computationally demand-
ing. Furthermore, designs attempted using AASHTO’s uniform
load method and AASHTO’s single mode method were found to
be equally unsatisfactory in achieving a uniform distribution of
ductility demands along the bridge length. Therefore, to simplify
the design procedure and to better distribute ductility demand along
BRBs in a bridge having multiple simply supported spans, here, an
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equivalent lateral force (ELF) design procedure is proposed; it has
been developed based on the results from the optimum design
approach based on NL-RHA described in Carrion-Cabrera and
Bruneau (2022a).

Note that a first tentative ELF procedure developed based on
limited results from NL-RHA was first attempted (Bruneau and
Carrion-Cabrera 2020), but considering only a limited subset of
design cases. Demands obtained from NL-RHA for bridges de-
signed with this procedure were good; however, when larger duc-
tilities or different BRB yield deformations were used, demands
were subsequently found to be unacceptable. Therefore, here, that
initial design procedure was improved by a broader and more com-
plete set of response results from bridges designed with NL-RHA
(Carrion-Cabrera and Bruneau 2022a). The process to develop the
ELF procedure presented here is described on detail in the next
subsections and is shown to be adequate to achieve the intended
objective.

Bridges Archetype

The focus here is on regular straight simply-supported multi-span
bridges having odd number of spans, implemented with BRBs in
the longitudinal direction, and with spans supported by bidirec-
tional sliding bearings. The bearings are assumed to have negligible
lateral strength and to be supported on rigid abutments and elastic
piers. This is consistent with the targeted seismic performance of
keeping the substructure and superstructure elastic while BRBs be-
have inelastically, limiting maximum forces in the structure. BRBs
can be implemented in bridges in the longitudinal direction in sev-
eral different configurations, each resulting in different ductility
demands. Carrion-Cabrera and Bruneau (2022b) recommended us-
ing the configuration where BRBs are connecting spans to piers
and where BRBs connected to the same pier have the same proper-
ties. Note that for this configuration at least one of the two BRBs
connected to the pier can reach the target ductility. Fig. 1 shows a
sketch of the type of bridges studied here. Further research will
consider different and more complex bridge archetypes and geom-
etries, which are beyond the scope of this paper.

For this study, the values of parameters were set to cover a large
range of possible bridges. The number of spans ranged from 3 to 11,
the span mass was arbitrarily set equal to 175.55 Mg (1 kip s2=in)
since the controlling parameter is Tp defined by Eq. (1) representing
the ratio span mass to pier stiffness (Carrion-Cabrera and Bruneau
2022a), the piers stiffness ranged from 1.76 kN=mm (10 kip=in)
(representing a flexible pier) to 702.22 kN=mm (4,000 kip s=in)
(representing a rigid pier), the ratio of the mass of the pier to
the span mass was set equal to 0.1, and a base yield displacement
of the BRB was set equal to 3.505 mm (0.138 in). Such yield dis-
placement was represented by a BRB with an equivalent length
equal of 2,032 mm (80 in), a length calculated to be adequate

to prevent low-cycle fatigue under annual thermal cycles (Wei and
Bruneau 2016) for an arbitrary span length equal to 30.48 m
(100 ft) and a Grade 50 steel, which has a yield strength equal
to 345 MPa (50 ksi). Additionally, yield displacement values of
1.753 mm (0.069 in) and 7.01 mm (0.276 in) were also considered,
representing a yield displacement larger and smaller than the base
yield displacement. These yield displacements represent BRBs
with equivalent lengths equal of 1,016 and 4,064 mm (40 and
160 in), still with a Grade50 steel. The target BRB displacement
as expressed by the target BRB ductility (i.e., normalized by the
BRB yielding displacement) were 5 and 10. Values for all these
parameters are summarized in Table 1. A more detailed explanation
of these parameters and how they were selected is presented in
Carrion-Cabrera and Bruneau (2022a)

Tp ¼ 2π

ffiffiffiffi
m
k

r
ð1Þ

All bridges considered here were first designed using NL-RHA
to effectively reach the target ductility in at least one BRB in each
span along the bridge. This design was called the optimum design.
The response of the bridge for this optimum design obtained from
the NL-RHA was then used here to calibrate the proposed equiv-
alent lateral force method. Selected NL-RHA results are presented
in this paper for illustration purposes. Additional results are pre-
sented in detail in Carrion-Cabrera and Bruneau (2022a).

Equivalent Lateral Force Method Definition

The proposed ELF method considers seismic loads applied to the
structure as equivalent lateral forces with a given distribution along
the bridge length such as to generate the maximum deformation in
all BRBs at the same time. This proposed procedure is similar in
format to the ELF procedure in ASCE/SEI 7-16 (ASCE 2017),
where the distribution of forces is obtained by the use of an equiv-
alent mode shape where forces are distributed along the height of a
building, with the mode shape expressed as function of the period
of the structure. Analogous to what was done for buildings, the ELF
procedure proposed and applicable to the bridges studied here is
calibrated to capture the dynamic response of the bridge. Special
emphasis is put on the equivalent mode shape that provides the
distribution of forces along the bridge.

The equivalent mode shape is used because in a general case,
none of the mode shapes of the structure can fulfill the requirement
to generate the maximum deformation in all of the BRB, or even the
maximum displacements along the structure, because the maxi-
mum deformations in each BRBs are reached at different times
due to the combination of different modes and the nonlinearity of
the structure’s response. Therefore, if the objective is to have a sin-
gle mode that would produce the same deformation (and yield de-
formation) in the BRBs that were observed from NL-RHA that
reached the target ductility, then a special mode shape is required—
one that would have to be defined for this purpose. This specialFig. 1. Bridge with BRBs.

Table 1. Summary of parameters considered

Parameter Values

Span mass 175.55 Mg (1 kip s2=in)
Number of spans 3, 5, 7, 9, and 11
Pier stiffness range 1.76 to 702.22 kN=mm (10 to 4,000 kips=in)
BRB yield displacement 1.753, 3.505, 7.010 mm (0.069, 0.138, 0.276 in)
Target ductility 5 and 10
BRB equivalent length 2,032 mm (80 in)
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mode shape is called here an equivalent mode shape. Using this
mode shape, the deformation in BRBs can be written as:

fΔBRBg ¼ ½T�fyg ¼ ½T�½K�−1½M�fϕgSaðT1Þ ð2Þ

where {y}, [T], {ΔBRB}, [K], [M], {ϕ}, and SaðT1Þ are respec-
tively: the vector of displacement of the structure, a topological ma-
trix used to calculate the deformations in BRBs, the vector of
deformation of BRBs, the stiffness matrix of the structure, the mass
matrix, the mode vector, and the pseudo acceleration at the funda-
mental period of the structure.

For the application studied here, the equivalent mode (that be-
longs to the ϕ vector space) is defined as the combination of several
linear independent vectors (basis vectors of the ϕ vector space),
similar to the definition of Ritz vectors modes; however, here, they
are combined to form the equivalent mode shape. Thus, the equiv-
alent mode shape is defined as:

ϕ ¼ a1ϕ�1þ · · · þan−1ϕ�n−1 þ an · ϕ�n ð3Þ

where ai are constants, and ϕ�i is the ith vector of the basis of the ϕ
vector space. Each vector in the basis is defined such that the com-
bined mode varies linearly from span to span (e.g., the mode shape
value at the mass at the top of the piers is an average of the mode
shape value for each adjacent span). As a result, the mode shape is
linear piecewise with nodes at the mass spans.

The characteristic of each vector in the basis is explained with
the example of a 3-span bridge. This bridge has 6 BRBS but due to
symmetry, the analysis reduces to 3 BRBs (i.e., those in one half of
the bridge). From those 3 BRB, two of them are connected to the
same pier, and therefore, based on the constraint that all BRBs con-
nected at the same pier have the same cross-section area, only one
of those two will reach the target ductility. The problem thus re-
duces to the analysis of 2 BRBs that are intended to reach the target
ductility. Since the 3-span bridge is symmetric, only two vectors of
the basis are required. Each vector component considers a value
equal to 1 at the span mass and 0.5 at adjacent mass piers; written
in matrix format it is:

ϕ ¼

2
66664

1 0

0.5 0.5
0 1

0.5 0.5
1 0

3
77775
�
a1
a2

�
ð4Þ

The values equal to 0.5 are used to create a linear interpolation
between the equivalent mode value at each mass span and to
consider the influence of the mass lumped at the top of the pier.
Substituting Eq. (4) in Eq. (3), the values of a1 and a2 can be ob-
tained to reach the yield deformation in each BRBs corresponding
to the target ductility. After obtaining the values for a1 and a2, the
mode was normalized by a2 (as typically done with mode shapes).
Note that it is beneficial to have a mode shape with maximum de-
formation at the center of the bridge as a normalization process to
compare mode shapes between different bridges.

Considering that the bridge is analyzed in the longitudinal di-
rection, the length of the span is not important (due to the relatively
high axial stiffness of the spans compared to that of the BRBs).
Therefore, the bridge is represented by lumped masses in series.
The position of each mass is expressed by its normalized posi-
tion, x. The normalized value transforms any bridge considered
into a bridge with a normalized length equal to 2. The center of
this bridge is considered the origin of the system. As a result, its
ends are at −1 and 1. The location of each lumped mass repre-
senting a span, mi, is also normalized as follows:

x ¼ ðNspan þ 1Þ=2 − i

ðNspan − 1Þ=2 ¼ Nspan þ 1 − 2i

Nspan − 1
¼ 1 − 2

i − 1

Nspan − 1
ð5Þ

where i is the number of the span counting from the left abut-
ment. With the mode shape defined by Eq. (3), the equivalent
lateral force is calculated with Eq. (6) where R is a seismic re-
duction factor and W is the total weight of the bridge

Fi ¼
W SaðTÞ

R
miϕðxiÞP
n
j¼1 mjϕðxjÞ

ð6Þ

The proposed design procedure requires to calculate the period
of the structure, to calculate the mode shape and to define the re-
duction factor. All these parameters were calculated using equa-
tions fitted to the result obtained for all bridges designed with
NL-RHA procedure, and defined as described as follows. Note
that the design procedure described here is the one retained after
several other different options were considered but found to be
less successful.

Prediction of the Period of the Structure

In this section, the fundamental period obtained for bridges de-
signed using NL-RHA is defined by a simple equation obtained
by fitting a curve to the results. Here, the period of a single span
analyzed as a SDOF system with yield deformation equal to the
BRB yield deformation and designed to reach a set target ductility
is the smallest period, Tmin, that the structure can have to reach the
target ductility (i.e., it corresponds to a bridge with rigid piers). The
period obtained from the NL-RHA procedures for bridges having
the stiffest piers considered (approaching infinitely stiff piers) and
for their corresponding SDOF systems are listed in Table 2. Note
that in all cases the period obtained with the SDOF system is
smaller than the period obtained from optimization, but the differ-
ence is not significant (max 0.03 s). Therefore, for the following
calculations, the period obtained from the SDOF was used for sim-
plicity and for the benefit of its physical meaning.

The fundamental period of bridges, T1, designed with the
NL-RHA optimization procedure (Carrion-Cabrera and Bruneau
2022a) ranges from 0.13 to 1.90s. Also, it was observed that peri-
ods expressed as the ratio represented by Eq. (7) exhibit a
common trend if they are plotted against the ratio Tp=Tmin, as
shown in Fig. 2. Eq. (8) was developed to capture the trend in
behavior (without being an exact best-fit), referred to hereafter
as the fitted values. The comparison between result for all the
spans and from Eq. (8) is shown in the figure. Comparing data
and the fitted values, depending on the BRB yield deformation,
the period of the bridge [per Eq. (8)] seems have an upper limit
(which incidentally increases as the BRB yield deformation in-
creases, although this is not shown in the following figures). This
limit is not captured with Eq. (8), but it is indirectly corrected by
the R value described later when the equation of the R value is
defined

Table 2. Minimum period of the structure (in s)

Yield
deformation
(mm) (in)

μ ¼ 5 μ ¼ 10

SDOF

Bridge with
the stiffest pier
considered SDOF

Bridge with
the stiffest pier
considered

1.753 (0.069) 0.13 0.16 0.16 0.19
3.505 (0.138) 0.20 0.23 0.28 0.29
7.010 (0.276) 0.34 0.35 0.65 0.67
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�
T1

Tmin
− 1

�
1

Nspan
ð7Þ

�
T1

Tmin
− 1

�
1

Nspan
¼ 0.4

2
41 − 8�

Tp

Tmin

�
2 þ 8

3
5 ð8Þ

Equivalent Mode Shape

As a parallel process, the equivalent mode shape of the structure
was obtained for all the bridges designed with the NL-RHA optimi-
zation procedure (i.e., the ai constants in Eq. (3) were calculated),
and these mode shapes are shown in Figs. 3 and 4 in dashed lines.
Note that for the stiffest pier considered here (Tp ¼ 0.1 s), the equiv-
alent mode shapes are not straight lines, meaning that the behavior of

Fig. 2. Fitted equation for the fundamental period of the structure: (a) μ ¼ 5; and (b) μ ¼ 10. Note: 1 in = 25.4 mm.

Fig. 3. Equivalent mode shapes for bridges with different number of spans and different Tp and a target ductility μ ¼ 5. Note: 1 in = 25.4 mm.
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the spans are not totally decoupled from each other (as would be the
case for bridges having extremely rigid piers). The exception here
being with the behavior of the spans close to the center of the
bridges, which seems to be decoupled from the behavior of adjacent
spans, similarly to what would be observed for independent SDOF
systems, and this is more evident in the equivalent mode shapes for
the 11-span bridges having the largest BRB yield deformation. Note
that for the bridges with the largest BRB yield deformation, the
equivalent mode shape is almost a straight line, independently of
the number of spans. However, for the smallest BRB yield deforma-
tion, this similarity to a straight line is lost, which indicates that the
pier stiffness for these bridges is not rigid enough to make each span
behaves as an independent SDOF system. For that reason, the period
of the SDOF, showed in Table 2, is smaller than the period obtained
for the bridge with highest pier stiffness considered.

Also note that the equivalent mode shape has a concave down-
ward shape when the pier is relatively rigid, but then reduces to
become a straight line and later transition to become convex for
flexible piers. The limit period, or the Tp value when the equivalent
mode shape is practically a straight line was not constant for all the
bridges under study, but instead varied based on the number of
spans.

Based on the previous analysis, the function to be selected to
represent these equivalent mode shapes should be able to change
its curvature as function of the period of the pier. To capture this
phenomenon, the mode shape was redefined in Eq. (9) to be the
sum of two functions defined by Eq. (10), where k1 and k2 change

with the period of the structure; x ranges from −1 to 1; and a, b,
and c are constants to be determined based on the mode shape
results. From the equivalent mode shapes, shown in Figs. 3
and 4, it is also observed that the minimum value of the equivalent
mode shape reduces as the target ductility increases. The mini-
mum values are approximately 0.35 and 0.30 for a target ductility
equal to 5 and 10, respectively. The maximum value of the equiv-
alent mode shape is always equal to one when x ¼ 0 (at the center
of the bridge). Based on Eq. (10), the minimum value of the equiv-
alent mode shape is at x ¼ 1 and is given by the constant a when k
tends to infinity. The maximum value of the function is at x ¼ 0,
and is equal to aþ b. Solving these equations, the value of a and b
are determined. In the case of c, it must have a value more than 1
to capture the concave curvature of mode shapes when piers are
relatively rigid; a value of 1.1 was found to be suitable for all
cases. The value of all the constants in Eq. (10) are given in
Table 3. The parameter k1 and k2 were obtained from curve fitting
by trial and error

ϕðx; k1; k2Þ ¼ 1þ yðx; k1Þ − yðx; k2Þ ð9Þ

Fig. 4. Equivalent mode shapes for bridges with different number of spans and different Tp and a target ductility μ ¼ 10. Note: 1 in = 25.4 mm.

Table 3. Constant values for equation of the mode shape

Target ductility a b c

5 0.35 0.65 1.1
10 0.30 0.70 1.1
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yðx; kÞ ¼ aþ b ·

 
1 − jxj

1
k

c

!
k

ð10Þ

It was observed that the values of k1 is related to the ratio of
Tp=Tmin. Values obtained by curve fitting of the mode shape are
shown in Figs. 5(a) and 6(a). From the figures, it is also observed
that k1 has an upper limit related to the number of spans, which
increases as the number of spans increases. The maximum values
of k1 for a given number of spans and different yield deformations
are close to each other but are different from values obtained for
bridges having different target ductility. Therefore, data was di-
vided according to the target ductility and analyzed independently.
Two functions were used to represent k1 for results for each target
ductility: one to represent the common trend and a second to re-
present the upper limit values. The values of k1 for a target ductility
equal to 5 and 10 were fitted with Eqs. (11) and (12), respectively,
where the right side of the equations represents the upper limit.
Note that the upper limit in the equations for k1 varies only as a
function of the target ductility and the number of spans (right side
of the equation). The best fit values are shown in Figs. 5(a) and 6(a),
and the values of Tp=Tmin for the maximum k1 are listed in Table 4.

Values of k2 were also related to the ratio Tp=Tmin. Values ob-
tained by curve fitting of the mode shape are shown in Figs. 5(b)
and 6(b). From the figure, it is observed that k2 does not have an
upper limit, but instead has a lower limit equal to zero for values of
Tp=Tmin ≤ 1. For the case of μ ¼ 5, k2 was fitted with Eq. (13).
This fit was done to make k2 approximately equivalent to an upper
bound for all the data (i.e., for all the results obtained) since a large
value of k2 will increase the area in BRBs connected to the abut-
ment, which typically reduces the possibility of concentration of
BRB ductility demand there as was observed before. For the
bridges with target ductility equal to 10, the same equation,
Eq. (13), was found to be valid

k1 ¼ 4

2
641 − 8�

Tp

Tmin

�
2 þ 8

3
75 ≤ 2.25ð1 − 0.7Nmas−2Þ ð11Þ

k1 ¼ 4

2
641 − 8�

Tp

Tmin

�
2 þ 8

3
75 < 3ð1 − 0.7Nmas−2Þ ð12Þ

k2 ¼ 0.06

�
Tp

Tmin
− 1

�
> 0 ð13Þ

With the fitted equations, the mode shapes were calculated for
bridges with target ductility equal to 5 and 10, and are respectively
shown in Figs. 3 and 7 as continuous lines. In these figures, values
are relatively well represented by the best-fit functions. Fig. 8,
shows another comparison between the predicted values of the
mode shape at different x locations and those obtained from the
NL-RHA designs for different locations in the bridge. It is observed
that these predicted values visually appear to be a good match con-
sidering the simplicity of the preceding best-fit method.

# of
Spans

(a)

(b)

Fig. 5. Fitted equation for bridges with μ ¼ 5 for: (a) k1; and (b) k2.

(a)

(b)

Fig. 6. Fitted equation for bridges with μ ¼ 10 for: (a) k1; and (b) k2.

Table 4. Tp=Tmin for maximum k1

Target
ductility

Number of spans

3 5 7 9 11

5 1.27 2.17 2.65 2.92 3.06
10 1.52 2.78 3.64 4.20 4.53
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Reduction Factor

The fitted mode shape and period equations defined previously
were used to calculate the reduction factor, R, to be used in the
ELF procedure. The reduction factor is used in Eq. (6), where
Sa(T) is calculated at the fundamental period of the structure,
T1, as approximated by Eq. (8) (this selection result in conservative
R values compared with the case where the period from NL-RHA is
used). Note that SaðT1Þ is the pseudo acceleration that is obtained
from the design spectrum, ϕðxÞ is the equivalent mode shape cal-
culated with Eqs. (9)–(13), and R is the unknown value to be de-
termined. The lateral forces, Fi, are also unknown; however, the
expected effects of these loads are known, which is to reach the
yielding deformation on the BRBs of interest (namely, the ones
connected to the abutment and one of the BRBs connect to each
pier). Mathematically, the deformation in all BRBs can be ex-
pressed as:

fΔBRBg ¼ ½T�fyg ¼ ½T�½K�−1fFig ð14Þ

where [K] is the stiffness matrix calculated from the bridge de-
signed with NL-RHA.

The vector {ΔBRB} contains the BRB deformation from all
BRBs. For this elastic based analysis, from the two BRBs con-
nected to the pier, it is considered that the BRB that reaches the
target ductility is the one with the largest deformation. From the
vector {ΔBRB}, a subset is defined as {ΔBRBMax

} that contains
the deformations of all BRBs expected to reach the target ductility
demand. The minimum value of this subset was selected to calcu-
late the reduction factor. The reduction factor is obtained from:

R ¼ minfΔBRBMax
g

Δy
ð15Þ

The R value calculated with this minimum value of the subset
results in the minimum reduced seismic lateral force on the system
that makes all BRBs of the subset reach at least their yielding de-
formation based on an elastic analysis of the bridge with the opti-
mum design, which is conservative.

Reduction factors resulting from Eq. (15) considering different
BRB yield deformations, different pier stiffnesses, and different
number of spans are shown in Fig. 9. Note that only when piers are
infinitely stiff, and for the same yield deformation and target duc-
tility, reduction factor tends to be the same for all bridges. This is

Fig. 7. Fitted equivalent mode shapes for μ ¼ 10. Note: 1 in = 25.4 mm.
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because each span behaves similarly to a SDOF system in that case.
However, when the pier stiffness reduces, and therefore the period
of the pier increases, the reduction factor changes depending the
number of spans. A conservative value to use for design would
be the one that uses the lower envelope of all the curves, resulting
in the smallest reduction factor.

As a result, for the case of an infinitely stiff pier and based on
results presented in Carrion-Cabrera and Bruneau (2022b), when
spans can be modeled as SDOF, the reduction factor can be ob-
tained as:

1.0 ≤ αμ ¼ 0.06μSDOF þ 0.7 ≤ 1.3 ð16Þ

RðT1Þ ¼

8>>><
>>>:

�
μSDOF

αμ
− 1

�
T1

1.25Ts
þ 1 if T1 < 1.25Ts

μSDOF

αμ
otherwise

ð17Þ

where αμ is a modification factor valid for ductility larger than 5
and less than 10.

However, when piers are flexible, the reduction factor changes
as the period of the pier changes, either reducing or increasing. In
comparison, in a SDOF system, when the period of the system
increases, the reduction factor typically increases. As such, a
behavior similar to SDOF systems is not observed in this case.
When the substructure stiffness reduces, the period of the pier
and the structure increases; however, the reduction factor still re-
duces. For a target ductility equal to 5, it is observed that in all
cases the reduction factor converges to a value of 2.5. For the case
of target ductility equal to 10, the reduction factor converges to a
value of 4 when piers are flexible. Therefore, Eqs. (18) and (19)
are proposed here to calculate the reduction factor to be used with
the ELF procedure. This calculated reduction factor is indepen-
dent of the number of spans and is shown as a thick black line
in Fig. 9

RðT1Þ ¼

8>>><
>>>:

�
μSDOF

αμγμ
− 1

�
T1

1.25Ts
þ 1 if T1 < 1.25Ts

μSDOF

αμγμ
otherwise

ð18Þ

Fig. 8. Equivalent mode shapes values at different x locations versus Tp for μ ¼ 5. Note: 1 in = 25.4 mm.
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γμ ¼ 1þ 2

�
T1

Tmin
− 1

�
≤ 2 ð19Þ

Using Eq. (8) to calculate the factor (T1=Tmin − 1) of the struc-
ture, the final reduction factor was calculated with Eq. (18) and is
shown in Fig. 10 with asterisks.

Demands in Bridges Designed with the Proposed
Procedure

To verify the adequacy of the proposed ELF design procedure using
the approximated reduction factors described previously, BRBs
were designed for 420 bridges having (14 different stiffness, 3 dif-
ferent yield deformation, 5 different number of spans, and 2 targets
mean ductility) and the BRB ductility demand was obtained with
NL-RHA. Results are shown in Figs. 11–15. Fig. 11 shows the re-
sulting mean BRB ductility demand. Note that ductility demand
does not exceed the target ductility for most of the bridges, except
few cases and for some values of Tp. Moreover, demands are rel-
atively well balanced in all BRBs and are not concentrated in only a
few BRBs [contrary to what was observed in bridges designed with
RSA (Carrion-Cabrera and Bruneau 2022b)]. Fig. 12 shows the
90th percentile of the BRB ductility demands. In most of the
bridges, demand in BRBs are less than twice the target ductility,

even for some of the bridges that showed mean ductility demand
larger than the target ductility. For this upper limit (90th percentile),
the worst case observed is in 11-span bridges with BRBs having
short yield deformations. Recall, that the upper limit used here
is a measure that emphasizes that only in 10% of the cases, the
BRBs experience demands larger than those used during their
qualification testing, and that it does not necessarily represent fail-
ure of the BRBs (because AISC-341 requires BRBs to be subjected
to a qualification testing protocol up to at least twice their design
displacement).

Fig. 13 shows the maximum mean and maximum 90th percen-
tile of the BRB fatigue index [calculated following Li et al. (2022)]
in a bridge, showing that the mean in most of the cases is less than
12% of its predicted fatigue life, meaning that even after an earth-
quake, the BRBs would not need to be replaced. For bridges where
the 90th percentile of ductility demand is larger than twice the tar-
get ductility, in the worst case, the 90th percentile of the fatigue
damage is less than 50% of its predicted fatigue life. Just for com-
parison, for the extreme case that could be considered an outlier, the
worst fatigue damage obtained in one BRB is less than 80% of its
predicted fatigue life, and this worst case was observed in only one
bridge.

The drift displacement demands of the piers was also studied.
The mean displacement demands in pier were normalized by the

(a)

(b)

Fig. 9. Reduction factor for equivalent lateral force method for: (a) μ ¼ 5; and (b) μ ¼ 10. Note: 1 in = 25.4 mm.
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Fig. 10. Calculated reduction factor R: (a) μ ¼ 5; and (b) μ ¼ 10. Note: 1 in = 25.4 mm.

(a) (b)

Fig. 11. Mean ductility demand: (a) μ ¼ 5; and (b) μ ¼ 10. Note: 1 in = 25.4 mm.
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BRB yield deformation and were compared with the elastic dis-
placement demand of one pier acting as a cantilever with its tribu-
tary mass lumped at the free end and having a period Tp (which
represents the pier of benchmark bridges that have the span rigidly
connected to the pier at one of its ends and free to move at the other,
with its displacement demand also equal to the spectral displace-
ment at the period Tp). Fig. 14 shows that mean displacements de-
mand is always smaller than the elastic displacement of the pier of
the benchmark bridge (labeled as EL. SDOF in the figure). The
displacement demand for the first piers is the smallest of all the
piers. For piers closer to the center of the bridge, this demand
increases.

The displacement in expansion joints were also calculated and
expressed as a normalized value with respect to the BRB yield dis-
placement. In the case of 90th percentile of demands, shown in
Fig. 15, it is observed that joint demands generally do not exceed
twice the BRB target deformation. The exception to that observa-
tion is for cases with the smallest BRB yield deformation and with a
target ductility equal to 5, which is not a problem since displace-
ment demands are quite small in these cases; for example, for a
ductility demand of 20, it would correspond to 20 × 0.0690 ¼
1.38,” which can be accommodated by conventional expansion
joints.

Finally, although not presented here, preliminary results indicate
that the design procedure is sufficiently robust to give satisfactory

results for irregular bridges, even though it was derived for regular
bridges. In that sense, it is not that different from the ELF pro-
cedure for buildings, but more comprehensive future research
is needed to establish the range of mass and stiffness variations
that allows irregular bridges to be reliably designed by this pro-
posed procedure.

General Design Procedure for Ductilities between 5
and 10

Based on the design procedure obtained previously for target duc-
tilities equal to 5 and 10, it is assumed that results for intermediate
values of target ductilities could be achieved by linear interpolation.
This linear interpolation affects only to the approximation of the
mode shape and k1, and they were modified to Eqs. (20) and (21),
respectively. Both equations introduce the target ductility demands,
μobj, as a variable

yðx; kÞ ¼ 1.0 −
�
0.60þ uobj

100

�"
1 −

 
1 − jxj

1
k

1.1

!
k
#

ð20Þ

k1 ¼ 4

2
641 − 8�

Tp

Tmin

�
2 þ 8

3
75 ≤ 1.5

�
1þ μobj

10

�
ð1 − 0.7Nmas−2Þ ð21Þ

(a) (b)

Fig. 12. 90th percentile of ductility demand: (a) μ ¼ 5; and (b) μ ¼ 10. Note: 1 in = 25.4 mm.
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Local and Global Ductility

Although the global ductility of the BRB has been considered to
generate the design procedure, it is recognized that the governing
design parameter in BRBs is the local ductility demand or strain in
the yielding core. For long BRBs the ratio between the yield de-
formation of the brace to the yielding deformation of the yielding
core, η, is close to one; however, for short BRBs, such as those
required for this application, due to the specific internal design that
these BRB may require, that ratio can increase to 1.70. In that case,
targeting a ductility of 10 would translate into core ductility de-
mands close to 17. Note that this may not always be the case,
and this would have to be determined in collaboration with the
BRB manufacturer. However, when that is an issue, to overcome
this problem, the target ductility for BRBs in bridges could be cal-
culated as function of the ductility in the core, μL. The global duc-
tility in the braces, μg, can be calculated with Eq. (22), and this
expression can be approximated by Eq. (23) for ductility demands
of more than 7

μg ¼ ½μL þ ðη − 1ÞβðμLÞωðμLÞ�
1

η
ð22Þ

μg ¼
μL

η
þ 1 ð23Þ

ELF Design Procedure

On the strength of the results presented previously, it is possible to
formulate the following proposed ELF procedure to design BRBs
in the longitudinal direction. The steps of that design procedure are
as follows:
1. Define the BRB length and BRB yield deformation. As a rule

of thumb, the BRB length should be larger than 6% the span
length (Wei and Bruneau 2018).

2. Define the target ductility of the brace, μtg, and check that the
corresponding local ductility of the core is less than 10.
Eqs. (22) or (23) can be used for this purpose.

3. Calculate the BRB target deformation corresponding to the
values in Step 2.

4. Calculate the seismic mass of the span and pier stiffness.
5. Analyze one span as a SDOF system and find the period to

reach the BRB target deformation using the following steps.
a. Calculate the inelastic spectral displacement as:

SdðTÞ ¼ RdðTÞ · g · SaðTÞ ·
�
T
2π

�
2

¼ μtg

RðTÞ · g · SaðTÞ ·
�
T
2π

�
2

ð24Þ

where R(T) is given by Eq. (18) and assuming γμ ¼ 1, and Rd
is the displacement amplification factor for short period

Fa
tig

ue
In

de
x 

[%
]

Fa
tig

ue
In

de
x 

[%
]

(a) (b)

Fig. 13. Maximum mean fatigue and maximum 90th percentile of fatigue: (a) μ ¼ 5; and (b) μ ¼ 10. Note: 1 in = 25.4 mm.
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system, SaðTÞ is the design spectrum, and g is the gravity
acceleration.

b. Calculate the period of the SDOF, or also called the minimum
period of the structure Tmin. The period of the SDOF is ob-
tained by solving the following equation:

Δy · μtg ¼ SdðTminÞ ¼
μtg

RðTÞ · g · SaðTÞ ·
�
T
2π

�
2

ð25Þ

Δy ¼
g · SaðTminÞ
RðTminÞ

·

�
Tmin

2π

�
2

ð26Þ

The solution could be solved graphically by drawing the
inelastic displacement spectrum and locating the period for
which the BRB target deformation is obtained.

6. Calculate Tp, which is the period of one pier modeled as a
SDOF with stiffness equal to the pier stiffness of the bridge
and mass equal to the pier tributary mass in the bridge.

Tp ¼ 2π

ffiffiffiffiffiffi
M
Kp

s

7. Calculate auxiliary parameters defined as:

γ ¼ Tp

Tmin
ð27aÞ

λ ¼ 1 − 8

γ2 þ 8
ð27bÞ

η ¼ T1

Tmin
¼ 1þ 0.4 · λ · Nspan ð27cÞ

8. Calculate the period of the structure (T1) in the longitudinal
direction:

T1 ¼ η · Tmin ð28Þ
9. Calculate the mode shape:

ϕðx; k1; k2Þ ¼ 1þ yðx; k1Þ − yðx; k2Þ

x ¼ 1 − 2
i − 1

Nspan − 1

yðx; kÞ ¼ 1.0 −
�
0.60þ utg

100

�"
1 −

 
1 − jxj

1
k

1.1

!
k
#

k1 ¼ 4 · λ ≤ 0.15 · ð10þ μtgÞ · ð1 − 0.7Nmas−2Þ ð29Þ

k2 ¼ 0.06ðγ − 1Þ > 0 ð30Þ

(a) (b)

Fig. 14. Mean column displacement demand: (a) μ ¼ 5; and (b) μ ¼ 10. Note: 1 in = 25.4 mm.
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10. Calculate the reduction factor for the bridge:

1.0 ≤ αμ ¼ 0.06μSDOF þ 0.7 ≤ 1.3

γμ ¼ 2 · η − 1 ≤ 2 ð31Þ

RðT1Þ ¼

8>>><
>>>:

�
μmax

αμγμ
− 1

�
T1

1.25Ts
þ 1 if T1 < 1.25Ts

μmax

αμγμ
otherwise

11. Calculate the equivalent lateral force:

Fi ¼
W SaðT1Þ

R
miϕðxiÞP
n
j¼1 mjϕðxjÞ

12. Calculate BRB cross-section areas.
An example of the application of this procedure is provided in

the appendix.

Conclusions

A simplified design ELF procedure was proposed that can be used
to obtain BRB ductility demands ranging from 5 to 10 (depending

on the R-factor used). Using NL-RHA, the proposed ELF design
procedure was found to provide acceptable results. The displace-
ment demands in piers and expansion joints can be limited by an
adequate selection of the BRB target ductility and BRB yield
deformation. BRB demands obtained from the proposed ELF pro-
cedure were found to be acceptable, in spite of the method simplic-
ity. Moreover, it was demonstrated by analyzing the fatigue damage
in BRBs, that the possibility of BRB fracture due to a single earth-
quake is unlikely.

The proposed design procedure has the advantage of simplicity
while being able to limit the ductility demand in BRBs along the
bridge. Furthermore, it results in a design where the BRB ductility
demand is relatively uniform along the length of the bridge.

Note that the work presented here has investigated the effective-
ness of the procedure on regular multi-span bridges and future re-
search will be needed to determine the range of applicability of this
procedure to irregular bridges.

Appendix. Design Example for BRBs

To demonstrate the procedure described previously, a regular sim-
ply supported straight 5-span bridge is designed with BRBs in the
longitudinal direction for a seismic region where the seismic design
spectrum is the one shown in Fig. 16. Initially, the bridge was

(a) (b)

Fig. 15. 90th percentile expansion joint displacement demand: (a) μ ¼ 5; and (b) μ ¼ 10. Note: 1 in = 25.4 mm.
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analyzed as a multispan bridge without considering seismic forces.
The weight of each floating span was calculated to be 386 kips
(equal to a mass of 1 kip · s2=in). The stiffness of piers was as-
sumed to be 100 kip=in. In all piers, the base is fixed, and the top
is simply connected to spans using slider bearings and BRBs. The
lumped mass at the top of the pier is assumed equal to 38.6 kips
(10% of the span mass). The calculated parameters in each iter-
ation are provided in a table as follows. Design proceeds as
follows:
1. The equivalent length of each BRB yielding core is selected to

be 80 in, and their yield strength is 50 ksi.

Δy ¼
80 in
50 ksi

¼ 0.138 in

2. The target ductility demand in the BRB is selected to be 10.

μ ¼ 10

3. The BRB target deformation is:

Δmax ¼ μtgΔy ¼ 1.38 in

4. The span mass, M, is equal to 1 kip · s2=in; and the pier stiff-
ness, Kp, is equal to 100 kip=in.

5. Design of a SDOF system with mass equal to the span mass
and a target displacement equal to Δmax.

a. Calculation of the period of a SDOF system that reach the
target deformation.
(1) Value of γμ with η equal to 1 (valid for a SDOF).

γμ ¼ 2η − 1 ≤ 2.0

γμ ¼ 2 · ð1Þ − 1 ¼ 1

γu ¼ 1 ≤ 2O:K:

(2) Value of αμ

αu ¼ 0.06μSDOF þ 0.7 ≥ 1 if μ ≤ 10

αu ¼ 0.06 · ð10Þ þ 0.7 ¼ 1.3 ≥ 1

αu ¼ 1.3 ≥ 1O:K:

(3) Value of Ts

Ts ¼
0.3371
0.8833

¼ 0.3816s

(4) Definition of the values of the equation used to calculate R

RðTÞ ¼

8>>><
>>>:

�
μtg

αuγμ
− 1

�
T

1.25Ts
þ 1 if T < 1.25Ts

μ
αuγμ

otherwise

RðTÞ ¼

8>>><
>>>:

�
10

1.3
− 1

�
T

1.25 · ð0.3816Þ þ 1 if T < 1.25Ts

10

1.3
otherwise

RðTÞ ¼
�
14.03 · T þ 1 if T < 0.477s

7.69 otherwise

(5) Calculation of the SDOF period by a graphical method.
Fig. 17 shows the spectral acceleration for the design
elastic spectrum and for the spectrum divided by R, and
the corresponding displacement spectrum obtained from
the acceleration spectrum. For a deformation equal to
Δmax and to reach a target ductility equal to 10, the period
of the SDOF system should be TSDOF and is obtained
from the figures using the reduced displacement spec-
trum (i.e., Sd=R). The period of the SDOF is then used
to find the reduced spectral acceleration. These results are
provided as follows:

Tmin ¼ 0.281s

b. Define an initial BRB cross-section area. Any value can be
used; however, the process followed here is a good first
approximation. Thus, BRBs are designed for the span repre-
sented by the SDOF (one span with BRBs connected to rigid
supports). Two BRBs are considered, one at each end. For a
SDOF, the force in each BRB located at the end of the span is:

SaSDOF=R ¼ 0.179g

FBRBSDOF
¼ 1

2

SaSDOF
R

Wspan ¼
1

2
· 0.179 · 386 kips

¼ 34.54 kips

The cross-section area of each BRB is:

ABRBSDOF
¼ FBRBSDOF

Fy
¼ 34.54 kips

50 ksi
¼ 0.7 in2

Fig. 16. Response spectrum.

(a) (b)

Fig. 17. Graphical solution: (a) spectral acceleration; and (b) spectral
displacement. Note: 1 in = 25.4 mm.
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6. Calculation of the parameter Tp

Tp ¼ 2π

ffiffiffiffiffiffi
M
Kp

s
¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 kip · s2=in
100 kip=in

s
¼ 0.63s

7. Auxiliary parameters:

γ ¼ Tp

TSDOF
¼ 0.63s

0.281s
¼ 2.242

λ ¼ 1 − 8

γ2 þ 8
¼ 1 − 8

2.2422 þ 8
¼ 0.386

η ¼ 1þ 0.4 · λ · Nspan ¼ 1þ 0.4 · ð0.386Þ · ð5Þ ¼ 1.772

8. Approximation of the fundamental period of the bridge, T1

T1 ¼ η · TSDOF ¼ 1.772 · 0.281s ¼ 0.498s

9. Definition of the equivalent mode shape
a. Value of k1

k1 ¼ 4 · λ ¼ 4 · ð0.386Þ ¼ 1.544

≤ 0.15ð10þ μÞð1 − 0.7Nspan−2Þ

k1 ¼ 1.544 ≤ 0.15ð10þ μÞð1 − 0.7Nspan−2Þ

k1 ¼ 1.544 ≤ 0.15 · ð10þ 10Þ · ð1 − 0.75−2Þ ¼ 1.971

k1 ¼ 1.544 ≤ 1.971

k1 ¼ 1.544

b. Value of k2

k2 ¼ 0.06 · ðγ − 1Þ > 0 ¼ max½0.06 · ðγ − 1Þ; 0�

k2 ¼ max½0.06 · ð2.242 − 1Þ; 0� ¼ max½0.0745; 0�

k2 ¼ 0.0745

c. Definition of the equation of the mode shape

yðx; kÞ ¼ 1 −
�
0.6þ μtg

100

�	
1 −

�
1 − jxj

1
k

1.1

�k


¼ 1 −
�
0.6þ 10

100

�	
1 −

�
1 − jxj

1
k

1.1

�k


yðx; kÞ ¼ 1 − 0.7

	
1 −

�
1 − jxj

1
k

1.1

�k


¼ 0.3þ 0.7ð1 − 0.909 · jxj1kÞk

ϕðxÞ ¼ 1þ yðx; k1Þ − yðx; k2Þ

ϕðxÞ ¼ 1þ 0.7ð1 − 0.909 · jxj 1k1Þk1

− 0.7ð1 − 0.909 · jxj 1k2Þk2

10. Calculation of the reduction factor for the multispan bridge.
a. Value of γμ.

γμ ¼ 2η − 1 ≤ 2.0

γμ ¼ min½2 · ð1.772Þ − 1; 2� ¼ min½2.54; 2� ¼ 2

Table 5. Calculation of equivalent lateral forces

Element Mass (m) (kip · s2=in) x ϕðxÞ m · ϕðxÞ
miϕðxiÞ
ΣmjϕðxjÞ

Fi ¼
W SaðT1Þ

R
miϕðxiÞ
ΣmjϕðxjÞ

(kip)

Span 1 1.0 −1.00 0.432 0.432 0.1421 52.13
Top pier 1 0.1 −0.75 0.382 0.038 0.0126 4.62
Span 2 1.0 −0.50 0.484 0.484 0.1595 58.51
Top pier 2 0.1 −0.25 0.644 0.064 0.0212 7.78
Span 3 1.0 0.00 1.000 1.000 0.3293 120.81
Top pier 3 0.1 0.25 0.644 0.064 0.0212 7.78
Span 4 1.0 0.50 0.484 0.484 0.1595 58.51
Top pier 4 0.1 0.75 0.382 0.038 0.0126 4.62
Span 5 1.0 1.00 0.432 0.432 0.1421 52.13

5.4 3.037 1.0000 366.89

Note: 1 in = 25.4 mm, 1 kip = 4.448 kN, and 1 kip · s2=in ¼ 175.18 Mg.

Fig. 18. Graphical representation of the equivalent mode shape and equivalent forces.
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b. Reduction factor. Since T1 ≥ 1.25Ts then

R ¼ μ
αu · γμ

¼ 10

ð1.3Þ · ð2Þ ¼ 3.85

11. Calculation of the equivalent lateral forces. The equivalent
forces are presented in Table 5. Fig. 18 is a sketch that shows
graphically the shape of the mode shape and the distribution of
forces.

a. Calculation of the reduced spectral acceleration

SaðT1Þ
R

¼ 0.678
3.85

¼ 0.176g

12. With the forces calculated in the previous step, the BRB
cross-section areas are obtained by an iterative procedure.
Any structural software could be used to calculate the forces
in BRBs. For the first iteration (labeled iteration 0), ABRBSDOF

is used as the cross-section area for all BRBs, but any cross-
section area could be used in iteration 0. Forces in BRBs are
calculated and the cross-section area is updated, then the
model is updated with the new areas to recalculate forces in
BRBs and redesign them, and the process is repeated until
convergence is reached. For this example, four iterations
were required to reach convergence. Cross-section areas for
each iteration are shown in Table 6. If the mass of the pier cap
is included in the step 3, the resulting cross-section areas
would be between 1% and 5% smaller than those obtained
in Table 6.
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Data generated during the study are available from the correspond-
ing author by request.
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